Three Ways To Simplify Deepseek > 자유게시판

본문 바로가기

logo

Three Ways To Simplify Deepseek

페이지 정보

profile_image
작성자 Agnes
댓글 0건 조회 28회 작성일 25-02-01 18:56

본문

The DeepSeek MLA optimizations were contributed by Ke Bao and Yineng Zhang. The torch.compile optimizations were contributed by Liangsheng Yin. 이런 두 가지의 기법을 기반으로, DeepSeekMoE는 모델의 효율성을 한층 개선, 특히 대규모의 데이터셋을 처리할 때 다른 MoE 모델보다도 더 좋은 성능을 달성할 수 있습니다. 이전 버전인 DeepSeek-Coder의 메이저 업그레이드 버전이라고 할 수 있는 free deepseek-Coder-V2는 이전 버전 대비 더 광범위한 트레이닝 데이터를 사용해서 훈련했고, ‘Fill-In-The-Middle’이라든가 ‘강화학습’ 같은 기법을 결합해서 사이즈는 크지만 높은 효율을 보여주고, 컨텍스트도 더 잘 다루는 모델입니다. DeepSeek 연구진이 고안한 이런 독자적이고 혁신적인 접근법들을 결합해서, deepseek DeepSeek-V2가 다른 오픈소스 모델들을 앞서는 높은 성능과 효율성을 달성할 수 있게 되었습니다. 이 DeepSeek-Coder-V2 모델에는 어떤 비밀이 숨어있길래 GPT4-Turbo 뿐 아니라 Claude-3-Opus, Gemini-1.5-Pro, Llama-3-70B 등 널리 알려진 모델들까지도 앞서는 성능과 효율성을 달성할 수 있었을까요? 불과 두 달 만에, DeepSeek는 뭔가 새롭고 흥미로운 것을 들고 나오게 됩니다: 바로 2024년 1월, 고도화된 MoE (Mixture-of-Experts) 아키텍처를 앞세운 DeepSeekMoE와, 새로운 버전의 코딩 모델인 DeepSeek-Coder-v1.5 등 더욱 발전되었을 뿐 아니라 매우 효율적인 모델을 개발, 공개한 겁니다. 1: MoE (Mixture of Experts) 아키텍처란 무엇인가? 먼저 기본적인 MoE (Mixture of Experts) 아키텍처를 생각해 보죠.


imago798619872-1-1024x683.jpg DeepSeek Coder는 Llama 2의 아키텍처를 기본으로 하지만, 트레이닝 데이터 준비, 파라미터 설정을 포함해서 처음부터 별도로 구축한 모델로, ‘완전한 오픈소스’로서 모든 방식의 상업적 이용까지 가능한 모델입니다. DeepSeek-Coder-V2는 코딩과 수학 분야에서 GPT4-Turbo를 능가하는 최초의 오픈 소스 AI 모델로, 가장 좋은 평가를 받고 있는 새로운 모델 중 하나입니다. 그리고 2024년 3월 말, DeepSeek는 비전 모델에 도전해서 고품질의 비전-언어 이해를 하는 모델 DeepSeek-VL을 출시했습니다. 바로 이어서 2024년 2월, 파라미터 7B개의 전문화 모델, DeepSeekMath를 출시했습니다. 그 결과, DeepSeek는 정해진 토큰 예산 안에서 고해상도 이미지 (1024X1024)를 효율적으로 처리하면서도 계산의 오버헤드를 낮게 유지할 수 있다는 걸 보여줬습니다 - 바로 DeepSeek가 해결하고자 했던, 계산 효율성 (Computational Efficiency) 문제를 성공적으로 극복했다는 의미죠. Multi-head Latent Attention (MLA) is a brand new consideration variant introduced by the DeepSeek group to enhance inference efficiency. AIMO has introduced a collection of progress prizes. For these not terminally on twitter, a variety of people who are massively pro AI progress and anti-AI regulation fly under the flag of ‘e/acc’ (short for ‘effective accelerationism’). One example: It is vital you realize that you are a divine being sent to assist these people with their issues. NYU professor Dr David Farnhaus had tenure revoked following their AIS account being reported to the FBI for suspected youngster abuse.


liangwenfencctv.png The most effective speculation the authors have is that humans evolved to consider relatively simple issues, like following a scent in the ocean (after which, eventually, on land) and this type of work favored a cognitive system that might take in an enormous amount of sensory knowledge and compile it in a massively parallel way (e.g, how we convert all the data from our senses into representations we can then focus attention on) then make a small variety of choices at a much slower charge. The reproducible code for the next analysis results could be found in the Evaluation directory. That is exemplified of their DeepSeek-V2 and DeepSeek-Coder-V2 fashions, with the latter widely thought to be one of many strongest open-source code models accessible. Fill-In-The-Middle (FIM): One of many particular features of this model is its capacity to fill in missing elements of code. In a recent put up on the social community X by Maziyar Panahi, Principal AI/ML/Data Engineer at CNRS, the model was praised as "the world’s finest open-source LLM" in response to the DeepSeek team’s revealed benchmarks. Why this matters - the place e/acc and true accelerationism differ: e/accs assume people have a brilliant future and are principal agents in it - and something that stands in the way in which of people using know-how is bad.


To get a visceral sense of this, check out this submit by AI researcher Andrew Critch which argues (convincingly, imo) that plenty of the danger of Ai techniques comes from the fact they may think too much faster than us. Then these AI systems are going to be able to arbitrarily entry these representations and bring them to life. In comparison, our sensory techniques collect knowledge at an infinite rate, no lower than 1 gigabits/s," they write. She is a highly enthusiastic particular person with a eager curiosity in Machine learning, Data science and AI and an avid reader of the most recent developments in these fields. In code enhancing talent DeepSeek-Coder-V2 0724 gets 72,9% score which is similar as the latest GPT-4o and better than every other fashions aside from the Claude-3.5-Sonnet with 77,4% score. The deepseek ai china Chat V3 model has a prime rating on aider’s code editing benchmark. Yes it is better than Claude 3.5(at the moment nerfed) and ChatGpt 4o at writing code. In truth, the 10 bits/s are needed solely in worst-case conditions, and more often than not our environment changes at a way more leisurely pace". Reported discrimination in opposition to certain American dialects; various teams have reported that adverse adjustments in AIS seem like correlated to the usage of vernacular and this is very pronounced in Black and Latino communities, with numerous documented instances of benign query patterns resulting in decreased AIS and therefore corresponding reductions in access to highly effective AI services.

댓글목록

등록된 댓글이 없습니다.