Eight Ways To Simplify Deepseek
페이지 정보

본문
The DeepSeek MLA optimizations were contributed by Ke Bao and Yineng Zhang. The torch.compile optimizations had been contributed by Liangsheng Yin. 이런 두 가지의 기법을 기반으로, DeepSeekMoE는 모델의 효율성을 한층 개선, 특히 대규모의 데이터셋을 처리할 때 다른 MoE 모델보다도 더 좋은 성능을 달성할 수 있습니다. 이전 버전인 DeepSeek-Coder의 메이저 업그레이드 버전이라고 할 수 있는 DeepSeek-Coder-V2는 이전 버전 대비 더 광범위한 트레이닝 데이터를 사용해서 훈련했고, ‘Fill-In-The-Middle’이라든가 ‘강화학습’ 같은 기법을 결합해서 사이즈는 크지만 높은 효율을 보여주고, 컨텍스트도 더 잘 다루는 모델입니다. DeepSeek 연구진이 고안한 이런 독자적이고 혁신적인 접근법들을 결합해서, DeepSeek-V2가 다른 오픈소스 모델들을 앞서는 높은 성능과 효율성을 달성할 수 있게 되었습니다. 이 DeepSeek-Coder-V2 모델에는 어떤 비밀이 숨어있길래 GPT4-Turbo 뿐 아니라 Claude-3-Opus, Gemini-1.5-Pro, Llama-3-70B 등 널리 알려진 모델들까지도 앞서는 성능과 효율성을 달성할 수 있었을까요? 불과 두 달 만에, DeepSeek는 뭔가 새롭고 흥미로운 것을 들고 나오게 됩니다: 바로 2024년 1월, 고도화된 MoE (Mixture-of-Experts) 아키텍처를 앞세운 DeepSeekMoE와, 새로운 버전의 코딩 모델인 DeepSeek-Coder-v1.5 등 더욱 발전되었을 뿐 아니라 매우 효율적인 모델을 개발, 공개한 겁니다. 1: MoE (Mixture of Experts) 아키텍처란 무엇인가? 먼저 기본적인 MoE (Mixture of Experts) 아키텍처를 생각해 보죠.
DeepSeek Coder는 Llama 2의 아키텍처를 기본으로 하지만, 트레이닝 데이터 준비, 파라미터 설정을 포함해서 처음부터 별도로 구축한 모델로, ‘완전한 오픈소스’로서 모든 방식의 상업적 이용까지 가능한 모델입니다. DeepSeek-Coder-V2는 코딩과 수학 분야에서 GPT4-Turbo를 능가하는 최초의 오픈 소스 AI 모델로, deepseek 가장 좋은 평가를 받고 있는 새로운 모델 중 하나입니다. 그리고 2024년 3월 말, DeepSeek는 비전 모델에 도전해서 고품질의 비전-언어 이해를 하는 모델 DeepSeek-VL을 출시했습니다. 바로 이어서 2024년 2월, 파라미터 7B개의 전문화 모델, DeepSeekMath를 출시했습니다. 그 결과, DeepSeek는 정해진 토큰 예산 안에서 고해상도 이미지 (1024X1024)를 효율적으로 처리하면서도 계산의 오버헤드를 낮게 유지할 수 있다는 걸 보여줬습니다 - 바로 DeepSeek가 해결하고자 했던, 계산 효율성 (Computational Efficiency) 문제를 성공적으로 극복했다는 의미죠. Multi-head Latent Attention (MLA) is a brand new consideration variant introduced by the DeepSeek crew to enhance inference effectivity. AIMO has introduced a series of progress prizes. For those not terminally on twitter, loads of people who find themselves massively pro AI progress and anti-AI regulation fly under the flag of ‘e/acc’ (brief for ‘effective accelerationism’). One example: It is crucial you understand that you are a divine being sent to assist these individuals with their problems. NYU professor Dr David Farnhaus had tenure revoked following their AIS account being reported to the FBI for suspected baby abuse.
The most effective hypothesis the authors have is that people evolved to consider comparatively easy things, like following a scent in the ocean (after which, eventually, on land) and this sort of labor favored a cognitive system that might take in an enormous quantity of sensory data and compile it in a massively parallel approach (e.g, how we convert all the data from our senses into representations we will then focus consideration on) then make a small variety of decisions at a a lot slower price. The reproducible code for the following analysis outcomes can be found in the Evaluation listing. That is exemplified of their DeepSeek-V2 and DeepSeek-Coder-V2 fashions, with the latter extensively regarded as one of many strongest open-source code models obtainable. Fill-In-The-Middle (FIM): One of the special features of this mannequin is its potential to fill in missing components of code. In a latest post on the social community X by Maziyar Panahi, Principal AI/ML/Data Engineer at CNRS, the model was praised as "the world’s finest open-supply LLM" in accordance with the DeepSeek team’s printed benchmarks. Why this matters - the place e/acc and true accelerationism differ: e/accs assume people have a bright future and are principal brokers in it - and anything that stands in the best way of humans using know-how is unhealthy.
To get a visceral sense of this, take a look at this post by AI researcher Andrew Critch which argues (convincingly, imo) that a whole lot of the danger of Ai programs comes from the fact they might imagine quite a bit faster than us. Then these AI methods are going to have the ability to arbitrarily access these representations and produce them to life. Compared, our sensory programs collect information at an infinite price, no less than 1 gigabits/s," they write. She is a highly enthusiastic individual with a eager curiosity in Machine studying, Data science and AI and an avid reader of the newest developments in these fields. In code enhancing skill DeepSeek-Coder-V2 0724 gets 72,9% score which is the same as the newest GPT-4o and higher than any other models apart from the Claude-3.5-Sonnet with 77,4% rating. The DeepSeek Chat V3 mannequin has a high rating on aider’s code modifying benchmark. Yes it is better than Claude 3.5(currently nerfed) and ChatGpt 4o at writing code. In truth, the 10 bits/s are wanted solely in worst-case conditions, and more often than not our surroundings adjustments at a way more leisurely pace". Reported discrimination towards certain American dialects; varied groups have reported that detrimental adjustments in AIS appear to be correlated to using vernacular and this is especially pronounced in Black and Latino communities, with quite a few documented instances of benign question patterns resulting in lowered AIS and subsequently corresponding reductions in entry to highly effective AI services.
If you liked this write-up and you would like to get far more details about ديب سيك kindly pay a visit to the website.
- 이전글Are you Sure you Want to Cover This Comment? 25.02.01
- 다음글How Good are The Models? 25.02.01
댓글목록
등록된 댓글이 없습니다.